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Second-order nonlinear optical (NLO) properties of 
crystalline materials depend both on the magnitude of the 
molecular hyperpolarizability (p )  and on the orientation 
of the chromophores in the crystal lattice.’ If the mo- 
lecular hyperpolarizability is to result in a nonzero ma- 
croscopic nonlinearity, the molecule must crystallize in a 
noncentrosymmetric space group. The design of new 
second-order NLO materials requires one both to address 
the structure-property relationships that govern 0 and to 
develop methodologies that favor noncentrosymmetric 
crystallization. Methods used to encourage noncentro- 
symmetric crystallization include the use of chiral mole- 
cules,2 the incorporation of functional groups that en- 
courage asymmetric intermolecular hydrogen bonding? the 
synthesis of molecules with very small ground-state dipole 
moments but larger excited-state dipole moments? and the 
variation of counterion with ionic  chromophore^.^,^ 

To develop molecular structure-property relationships, 
it is important to measure accurate values of f l  for many 
series of compounds. These values, which can be obtained 
by electric-field-induced second harmonic generation 
(EFISH) experiments, coupled with theoretical modeling 
will provide guidelines for the synthesis of new NLO ma- 
terials. Recently Cheng et al. have examined the effect 
that variation of donor and acceptor strength has on 6, for 
various aromatic systems, including benzenes and stilb- 
enes.’ In collaboration with Cheng, we are now studying 
the effect on the magnitude of f l  of variation of the relative 
substitution position of the donor and acceptor in stilbenes. 
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Figure 1. Plot  of S H G  intensity (arbitrary units)  as a function 
of particle size (micrometers) for compound 2. Each point actually 
corresponds to  a range of particle sizes roughly centered on the  
value indicated. 
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Figure 2. ORTEP drawing of 2 with 50% thermal ellipsoids. 
Hydrogen atoms are given arbitrary,  small thermal parameters. 

We chose to examine the x-methoxy-ycnitrostilbenes 
(where x and y’ = 2,3,4)  in detail because of the large p 
of 4-methoxy-4’-nitro-(E)-stilbene, 1, which can serve as 
a reference, and the availability of the nine isomem8 

While routinely screening organic materials synthesized 
in our laboratory for second harmonic generation powder 
efficiency by a modification of the Kurtz powder techni- 
que,9 we found that 2-methoxy-4’-nitro-(E)-stilbene, 2,1° 
has a second harmonic generation (SHG) powder efficiency 
-150-350 times that of a urea reference. We used the 
1064-nm output of a Q-switched Nd:YAG laser in a 
dual-beam system (using a urea sample in the reference 
arm) to provide normalization of the SH signals for laser 
shot-to-shot fluctuations. Pulse energies used were in the 
range 100-500 pJ with spot sizes of 2-3 mm. The diffusely 
backscattered SH signals were collected and isolated by 
using filters and a monochromator. The SH signals were 
detected by using photomultiplier tubes (Hamamatsu 
R406) whose outputs were amplified and integrated by 
using 10-ns gate widths. Lightly ground unsized micro- 
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Figure 3. ORTEP drawing of 2 showing the packing of molecules 
in the unit cell (outlined). The view is down the b axis; hydrogen 
atoms are omitted for clarity. 

crystalline powders of 2 ranged from about 40 to 150 pm. 
Given the possibility of preferential orientation of particles 
in assembling the samples, the uncertainties in the mea- 
sured efficiencies can be quite large, perhaps a factor of 
2 or more. A plot of SHG intensity as a function of particle 
size will reach a maximum and level off for a phase- 
matchable material; in contrast, if a material is not phase 
matchable, the SHG intensity will reach a peak value and 
then decrease to a small value. We have examined the 
particle-size-dependent SHG intensity for 2, and the data 
are consistent with 2 being a phase-matchable material 
(Figure 1). 

The UV-visible spectrum of 2 has a band centered at  
368 nm (t = 22 500 M-l cm-') in acetone. The cutoff (50% 
transmission) for a saturated solution of 2, in acetone, is 
a t  490 nm and for a 210 f 30 pm thick single crystal it is 
at 465 nm. The transparency and the powder SHG effi- 
ciency exhibited by 2 make it worthy of further study as 
a potential material for second harmonic generation. The 
crystal structure of 2 was determined to find the orienta- 
tion of the molecule in the lattice. The compound crys- 
tallizes in the orthorhombic, noncentrosymmetric space 
group Pna2,.l1 Distances and angles are generally as 
expected. An ORTEP drawing of 2 is shown in Figure 2. 
The molecules stack in the cell parallel to the ac plane, 
with A-K interactions as short as 3.45 (C6-Cl3) and 3.45 
A ('23-03). Most other interplane interactions are in the 
range 3.55-3.8 A (Figures 3 and 4). The planes of the 
molecules themselves are all nearly parallel, but their axes 
meet a t  angles of about 100". The herringbone pattern 
is in part responsible for the large powder SHG efficiency 
of 2. In the space group Pna2, the optimal angle between 
the symmetry-related donor-acceptor vectors of the 
chromophores for phase-matched SHG is 109.4". Thus 
crystals of 2 may undergo efficient phase-matched SHG.12 

(11) CIRHI~NOI: mol wt  255.28, orthorhombic Pna2, (No. 33), a = 
14.422 (6) A, b = 7.329 (2) A, c = 12.237 (7) A, V = 1293.4 (10) A3, 2 = 
4. Mo K n  radiation, 3941 reflections collected, 1196 independent used 
in refinement, full-matrix least-squares, R for 848 reflections ( R  = CIFo 
- ~ F c ~ ~ / ~ F o ,  where F, and F, are the observed and the calculated structure 
factors) with F,,2 > 0 = 0.046, goodness of fit ([E.ur(F? - F?)*/(n - p)]''2,  
where 1 ~ '  = the weight of the reflection, n = the number of data, and p 
= the number of parameters refined) = 2.06. All non-hydrogens were 
refined anisotropically. Hydrogen atom parameters were assigned from 
difference maps or by calculation with C-H = 0.95 A. 

(12) Zyss, J.; Oudar, J. L. Phys. Reu. A 1982, 26, 2028. 
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Figure 4. Packing drawing, showing the unit cell of 2 and four 
molecules. Hydrogen atoms are included only on the methyl 
carbon atom of the methoxy groups. 

To our knowledge only one compound in the literature 
has a powder SHG efficiency larger than that of a com- 
pound 2 (SH at  532 nm), a related compound, 3-methyl- 
4-methoxy-4'-nitro-(E)-stilbene, 3, which has been reported 
to have a nonlinearity roughly 750-1250 times that of 
urea.I3 Both compounds contain two molecular features 
that may contribute to the large observed macroscopic 
nonlinearity. These are a relatively weak donor13 (com- 
pared to dialkylamino) or acceptor, and molecular asym- 
metry. Both features may favor the noncentrosymmetric 
orientation of the chromophore in the lattice, as discussed 
below. Since dipole-dipole interactions tend to favor an- 
tiparallel packing, it may be desirable to minimize the 
ground-state dipole when working with neutral  molecule^.'^ 
Both 2 and 3 have a relatively weak donor group (methoxy) 
which results in a relatively small ground-state dipole 
moment (4.8 for 2 as compared to 6.2 for 4-dimethyl- 
amino-4'-nitro-stilbene8). In addition, both compounds 
have groups (the methoxy group for 2 and the methyl 
group for 3) that lower the symmetry of the molecule; this 
also tends to increase the probability of achieving non- 
centrosymmetric cry~tallization.~ It  is worth noting that 
both compounds have similar crystal motifs, dominated 
by F A  stacking with the donor of one ring sitting over the 
acceptor of the other ring, and a roughly 90-100" angle 
between the molecular axes. 

In summary, we have found that the yellow compound, 
2-methoxy-4'-nitro-(E)-stilbene, possesses a large powder 
second harmonic generation efficiency. This observation, 
the particle-size-dependent SHG study, and the crystal 
structure suggest that this compound may be of interest 
for second harmonic generation in the visible region. 
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